对于变频器大家应该都不是很陌生,因为现实生活中很常见。 如马上让我们无法释怀的空调,从以前的定频空调到现在的变频空调; 又如洗衣机、冰箱和电梯,等等这些都涉及到我们今天所要聊的变频器。
变频调速器主要用于交流电动机(异步电机或同步电机)转速的调节,具有变频器体积小、重量轻、精度高、功能丰富、保护齐全、可靠性高、操作简便、通用性强等优点。 变频调速是公认的交流电动机最理想、最有前途的调速方案,除了具有卓越的调速性能之外,变频调速还有显著的节能作用,是企业技术改造和产品更新换代的理想调速方式。 变频器作为节能应用与速度工艺控制中越来越重要的自动化设备,得到了快速发展和广泛的应用。
变频器产生的最初用途是速度控制,但目前在国内应用较多的是节能有限元分析。 中国是能耗大国,能源利用率很低,而能源储备不足。 应用变频调速可以大大提高电机转速的控制精度,使电机在最节能的转速下运行。 风机、泵类负载的节能效果最明显,节电率可达到20%~60%,这是因为风机、泵类的耗用功率与转速的3次方成正比,当需要的平均流量较小时,转速降低其功率按转速的3次方下降。
变频调速除了在风机、泵类负载上的应用以外,还可以广泛应用于传送、卷绕、起重、挤压、机床等各种机械设备控制领域。 它可以提高企业的产成品率,延长设备的正常工作周期和使用寿命,使操作和控制系统得以简化,有的甚至可以改变原有的工艺规范,从而提高了整个设备控制水平。
变频调速很容易实现电动机的正、反转,只需要改变变频器内部逆变管的开关顺序,即可实现输出换相,也不存在因换相不当而烧毁电动机的问题。 变频调速系统启动大都是从低速开始,频率较低,加、减速时间可以任意设定,故加、减速时间比较平缓,启动电流较小,可以进行较高频率的起停。
除了工业相关行业,在普通家庭中,节约电费、提高家电性能、保护环境等受到越来越多的关注,变频家电成为变频器的另一个广阔市场和应用趋势,如带有变频控制的冰箱、洗衣机、家用空调等,在节电、减小电压冲击、降低噪声、提高控制精度等方面有很大的优势。
②控制电路:主控制电路、信号检测电路、驱动电路、外部接口电路以及保护电路;
今天我们先来讲一讲主电路的设计和计算,内容可能有点长,大家可以mark起来慢慢看。
变频器的主电路如上图所示,主要包括交流电抗器、输入压敏电阻、整流桥、直流电抗器、直流充电电阻、直流电抗器、充电接触器、直流母线电容、电容均压电阻、逆变桥、
平时我们一般都以W为功率单位,那么W和VA之间有什么关系呢? 它们中间需要考虑功率因数λ(cosθ),只有当功率因数为1的时候,1W=1VA,而功率因数不为1的时候,两者就不相等了。 即视在功率S,有功功率P和无功功率Q之间的关系
S²=P²+Q²,P=Scosθ,Q=Ssinθ; 计算时,注意容量和标称功率之间的关系。
式中,UAC为三相输入线电压的有效值。 由于母线电容的存在,直流电压一般认为等于输入线UAC
eg.对于15kW的变频器,输出电流为32A,因此变频器输出容量为Po=1.73232380=21kVA,直流母线V,母线A。
一般整流桥很少过载,而且现在的整流管过载能力都比较强,从成本上考虑,所以选取的整流器件甚至可以略小于计
式中β为电压安全系数,一般取2。 目前整流管额定电压选取为单相800V,三相1600V。
很多时候我们会并联器件来满足所需的电流等级,器件的并联必须降低电流额定值使用,可以参照下面式子选择:
逆变桥计算随着功率半导体的发展,IGBT已经成为当下中大功率变频器逆变电路开关管选取的最佳选择。 再选择IGBT时我们要注意以下几点:
①首先根据变频器载频工作范围及热设计的要求选择一种合适的类型设计高度。 选择三种类型IGBT中的一种:
②根据体积、结构是否易于并联、维护成本及结构设计的压力等要求决定采用那一种封装形式。
③计算所选IGBT的电流等级、电压等级,该步骤同时也影响了吸收电路的形式选择及结构设计的特点。
考虑到瞬间过电压,IGBT的耐压通常为直流母线电压的两倍。 瞬间过电压受回路杂散电感和IGBT开关速度的影响,所以实际耐压的选择要视回路的杂散电感而定。
式中,UAC是变频器输入电源电压,β为电源电压的波动系数,α为安全系数,Ic为IGBT的额定电流,n为短路时电流冲击的倍数,Ls为杂散电感大小,Cx为吸收电容的大小,VPN为正常工作时母线电压。
电流的选择与最大工作频率,总功耗倒角、冷却方式及环境温度范围都有关系,实际上,Datasheet中给出的电流参数常常在一两种条件下定义,因此总的来讲并不准确适合实际应用,有时会偏差很大。
式中,k为电流的过载倍数,Io为变频器的额定输出电流,Ic为IGBT标称电流值(连续DC)。
式中,m为硬件电流保护倍数,Io为变频器额定输出电 流,Ic(1ms)为1ms标称电流。
一般而言,模块的选取主要根据是温升,只要温升能够满足要求,载流能力可以适当放宽。
由于单只IGBT模块电流容量有限,为了提高载流能力需要对IGBT并联。 由于IGBT具有正的温度系数,温度升高时导通压降会增大,因此本身具有自动均流的特性,并联使用一般不会导致严重的均流问题。
由于IGBT参数分散性,并联使用时需要放大IGBT的容量,IGBT电流需乘以1个降额系数,降额系数按照下式计算:
对于IGBT的并联,原则上和二极管并联差不多,在驱动电路方面有更高的要求,希望并联的各个开关管驱动信号一致以保证管子的同时开通和关断。 对此要求各并联的驱动线长
度相同,在各个管子上加装GE板,对驱动信号进行就近调理。 下面给出一个并联驱动的例子,大家可以参考一下:
RE为防止环流电阻,强电端A点和B点通过导线连接,电势有可能不完全相等,这样将在并联驱动电路中产生环流,RE的作用就是限制短路环流,一般取值为0.33Ω。 一般我们都会在栅射极并个电阻RGE,RGE都不能省略,其作用是防止IGBT栅极电荷积累,一般取值是10k~100k。
输入侧必须设计浪涌吸收电路,吸收元件一般采用压敏电阻、气体放电管或安规电容等,整流桥的输出就近安装一只高频无感电容(MKP或CBB81)。 主回路电路图中的的Yd和Cr,压敏电阻的耐压值一般选为820V,整流桥的输出吸收电容Cr与变频器功率有关,一般容值为0.22~2uF,耐压为1600V。
增加快熔。 快熔的熔断时间可达3~5ms比较适合整流桥的保护,并能防止故障的扩大及非常严重的后果(如烧毁变频器等)。 但对于是否增加快熔不同厂商有不同看法,大家可以根据实际需求来做抉择。
电流保护:一般采用电流检测保护(要求整个保护环节响应速度满足元件的规格要求),如快速霍尔电流检测保护,VCE保护等。
驱动脉冲WG3#低电平有效时,B点为低电平。 当IGBT正常开通时,CE间电压较低(一般为1.7~3V),W点电位较低,C点是15V的高电平,则A点经3k和510欧电阻分压得到1个电压约为5V(2+0.7+2),该电压不足以导致反向器翻转,点F保持高电平,三极管不导通,FO为高电平; 若IGBT发生短路故障,CE间电压VCE增大,导致A点电平升高,达到反向器的翻转电平,从而使F点为低,三极管导通,FO输出为低,从而产生故障信号,同时B点也变成高电平,将该IGBT驱动脉冲封锁,达到保护IGBT的目的。 D点到B点的反馈起个增强稳定的作用,去掉影响也不大。
电压保护:一般而言,变频器对瞬时超过模块耐压的过电压没有好的防止方法,超过模块耐压的瞬时过电压很容易导致模块电压击穿损坏。 对母线瞬时过电压一般在母线上并高频吸收电容保护模块。 如主回路电路图中的电容C。 其他的吸收形式如RC吸收、RCD吸收在变频器中都不常用。
慎重选择吸收电路的形式并仔细选择吸收电容的型号、容量、耐压及厂家。 一般耐压选为1600V的CBB电容,电容量跟变频器容量和结构有关,0.47~10uF,大小不等。
上电缓冲及实现缓冲电阻的选择及特点:上电缓冲电阻(主回路中Rc)要求抗冲击能力强。 必须确认电阻的冲击曲线并反复实验验证。 阻值大小由整流桥的型号和滤波电容的容量决定。 阻值大小一般可按流过电阻的电流为整流管电流额定值的2~3倍选取。
缓冲电阻旁路元件的选择及特点:上电时对电容充电结束后需要将充电电阻旁路,旁路器件有两种:
①接触器,实现简洁,成本低,功耗小,可靠性较差。 目前的大功率变频器多采用该方案。
通用变频器通常采用交流接触器,一般而言,接触器是按一定的导通电流有效关断的条件下设计的,在变频器的应用中,接触器一般是在没有电流的情况下闭合和断开,因此工作条件比标称条件更好,所以在容量的选取方面可以比较放宽一点。 一般情况,三相并联等于直流环节电流即可。
电源侧交流电抗器电压型通用变频器电网电压交流转变为直流经整流后都经电容滤波,电容器的使用使输入电流呈尖峰脉冲状,当电网阻抗小时,这种尖峰脉冲电流极大,会造成很大的谐波干扰,并使变频器整流桥和电容器易损坏。
当变压器容量大于变频器容量10倍以上,电网配电变压器和输电线的内阻不能阻止尖峰脉冲电流时,当同一电源上有晶闸管设备或开关方式控制功率因数补偿装置时,三相电源不平衡度大于3%时,都要对输入侧功率因数作提高和抑制干扰,都需使用电源侧交流电抗器。
阻抗即可防止突变电压造成接触器跳闸,使总谐波电流畸变下降到原先的44%。 实际使用中为了节省费用,常采用2%阻抗的电感量无限寿命设计,但这对环保而言是不好的。 比较好的场合应使用4%阻抗或更大的电抗器。 一般常选用2~4%的压降阻抗,这个 % 是对相电压而言,即:
对于使用者,需考虑电感值和电流值两方面,电流值一定要大于等于额定值,电感值略有大小问题不大,偏大有利于减少谐波,但电压降落会超过3%,使用者还要考虑电源内部
阻抗,电源变压器功率大于10倍变频器功率,而且线路很短的场合,电源内阻小,不仅需要使用输入侧交流电抗器,而且要选择较大的电感值,例如选用4~5%
阻抗的电感量。直流电抗器计算直流电抗器接在滤波电容前,它阻止进入电容的整流后冲击电流的幅值,并改善功率因数、降低母线交流脉动。 直流电抗器在变频器功率大于22KW时建议都要采用,当变频器功
率越大,越应该使用,因为没有直流电抗器时,变频器的电容滤波会造成电流波形严重畸变和进而使电网电压波形严重畸变,而且非常有害于变频器的整流桥和滤波电容寿命。
直流电抗器能有效降低输入电流谐波,提高功率因数。 电感大小选择合理,电感越大,改善功率因素的效果越好,但电感太大,也会增大基波电流的电压降,减小变频器的输入电压,减小了变频器的最大输出功率。
直流电抗器的电感值的选择一般为同样变频器输入侧交流电抗器3% 阻抗电感量的2-3倍,最少要1.7 倍),即
直流母线电解电容计算直流电解电容是变频器成本比重较大的一块。 用于380V通用变频器的直流电解电容一般都是采用两只400V串连来满足536V的耐压值,220V的单相变频器一般使用1只400V即可满足耐压要求。 一般容量选取原则是:100uF/1KVA。 由于电容器规格有限,电容量选取范围可定为85uF~110uF/KVA,单相输入的机型电容量应向上取大一些的值。
如果安装了直流电抗器,可以有效降低母线交流脉动,这样可以减小电容器容量。
制动单元和制动电阻(BD和DBR)小功率制动单元一般在变频器内部,外部只接制动电阻。 大功率、制动单元由另外外接的制动单元接到变频器母线上,当电机制动时,电机的电能反馈回母线,使母线电压升高(我们也称之为泵升电压),升高到一定值时,开通制动单元的开关管,用制动电阻消耗母线上一部分电能,维持母线电压不继续往上升高,使电机能量消耗在制动电阻上而获得制动力矩。 制动单元的导线m,接到变频器的直流母线(P+、N端)要使用双绞线或密排的平行线,导线的截面应不小于电机输电线。
制动电阻的阻值不是随便的,它有一定范围。 太大了,制动不迅速,太小了制动用开关元件很容易烧毁。 一般当负载惯量不太大时,认为电机制动时最大有70%能量消耗于制动电阻,30%的能量消耗于电机本身及负载的各种损耗上,此时,
低频度制动的制动电阻的耗散功率一般为电机功率的(1/4~1/5),在频繁制动时,耗散功率要加大。
有的小变频器内部装有制动电阻,但在高频度或重力负载制动时,内装制动电阻的散热量不足,此时要改用大功率的外接制动电阻。 各种制动电阻都应选用低电感结构的电阻器; 连接线要短; 并使用双绞线或密着平行线; 采用如此低电感措施的原因是为了防止和减少电感能量加到制动管上,造成制动管损坏; 制动电阻值不能过分小; 如果回路的电感大、又电阻小,将对制动管不利,会造成损坏。
以上便是关于变频器主回路的设计和计算的简单介绍,还是要具体问题具体分析。 写着写着没太在意,篇幅有点长,大家可以收藏,有需要的时候可以参考下。
很多人已经发现了变频器对电机损伤的现象。例如,某水泵厂,近两年来,他的用户频繁报告水泵在保修期内发生损坏的现象。而过去,这个水泵厂的产品质量十分可靠。经过调查,发现这些损坏的水泵都是用变频器驱动的。 变频器的出现为工业自动化控制、电机节能带来了革新。工业生产中几乎离不开变频器,即使在日常生活中,电梯、变频空调也成为不可缺少的部分,变频器已经开始渗入到生产、生活的各个角落。然而,变频器也带来了许多前所未有的困扰,其中损伤电机就是最典型的现象之一。 很多人已经发现了变频器对电机损伤的现象。例如,某水泵厂,近两年来,他的用户频繁报告水泵在保修期内发生损坏的现象。而过去,这个水泵厂的产品质量十分可靠。经过调查,发现这些损坏的水泵
对电机的损伤有哪些 /
1、控制原理不同 通用变频器控制是采用通用 变频器 对受控的水泵电机、风机电机进行单独的控制。当其控制系统检测到某一受控量值时,就按这个量值与给定值之间的误差进行比例(P)、积分(1)和微分(D)之间的线性组合进行控制,即PID控制。这种控制方法只适合于线性系统中,并对单一控制对象实施控制。 动态变流量节能控制系统是采用模糊控制技术与变频技术相结合的控制原理,固然也使用了通用变频器(VVVF),但它不是采用PID控制方式,而是采用模糊控制方法。也就是在整个系统控制过程中,以语言描述人类知识,并把它表示成模糊规则或关系,通过推理非补偿环座、利用知识库,把某些知识与过程状态结合起来的控制行为。它并不具有明显的PID结构,但也可以称为非
在产品的加工制造业以及工业生产中,泵类、风机等设备的应用范围越来越广泛,其在电能上的消耗以及挡板、阀门等一些设备的节流损失,还有对它们的日常的维修和维护的费用几乎占成本的20%,这是一笔不小的生产费用的开支,随着经济的发展,改革不断深入,市场竞争不断加剧,节能降耗也逐渐成为了提高产品质量和降低生产成本的一个重要手段。 1、变频节能技术基本理论 变频技术使用的基本原理:在很长的一段时期内,电气设备所使用的交流电的频率都是维持在一个固定的状态,变频技术的运用就是使频率变成了一种可以随意的调节和利用的资源。现如今,变频技术中最活跃以及最快发展的就是变频的调速技术。 变频技术包括计算机技术、电力电子技术、点击传动技术,
开关电源的几个维修步骤如下: 1、检测整流电路D1—D4是否击穿或断路,滤波电路的电容是否损坏,平衡电阻R1、R2是否正常,降压电阻R3是否烧断或阻值增大失效(断电情况下测试)。 2、检测开关管b-e结、c-e结是否有击穿短路现象、测量开关变压器各个绕组是否有短路现象,以确定开关管、及开关变压器的好坏(断电情况下测试)。 3、检测次级输出绕组的整流滤波元件,重点察看滤波电容是否鼓包或损坏,以排除次级电路短路的可能。 4、检测吸收回路D5、R11、C9是否正常(断电情况下测试)。 5、在确定上述元件正常的情况下,我们可以把开关电源板从 变频器 上取下单独对其进行加电试验。用调压器缓缓地调至开关电源的额
1 引言 随着变频器使用的增多,工程技术人员发现当变频器出现故障,需要检修时,电机就不得不停下来,不能满足现场连续生产的要求。为此,工程技术人员又在变频器和电机、母线之间增加了一套切换装置,以满足电机连续运转的要求。根据切换开关的不同,变频器的旁路方案分为手动旁路方式与自动旁路方式。下面分别介绍如下: 2 两种旁路方式的介绍 2.1 一拖一手动旁路方式 2.1.1 基本原理 一拖一手动旁路方式是由3个高压隔离开关qs1、qs2和qs3组成,如图1所示。要求qs2和qs3不能同时闭合,在机械上实现互锁。变频运行时,qs1和qs2闭合,qs3断开;工频运行时,qs3闭合,qs1和qs2断开
手动旁路与自动旁路对比 /
通讯端口的硬件通讯参数配置见F8组功能,将通讯速率、数据格式设定成上位机一致,是能正常通讯的前提。 ASB53XH的串行口内置MODBUS-RTU从站通讯协议,上位机可通过串口查询或修改变频器功能码、各种运行状态参数、给变频器发送运行命令与运行频率等 。 通讯设置示意图 ASB53XH内部对功能码、各种运行状态参数、各种运行指令等信息,是按“寄存器参数地址”的方式组织的,上位机能进行通讯数据交互的协议定义。
串行通讯怎么使用 /
一、企业简介 天瑞集团是国内外知名的集铸造、旅游、煤电、水泥为一体的大型、综合型企业集团,其下属的天瑞水泥有限公司是国家水泥工业综合实力“十强”之一,为河南省最大的水泥制造商,拥有强大的水泥生产能力和世界上最大的单线吨水泥熟料的干法生产线——天瑞荥阳水泥。 该生产线万吨;配套建设18MW纯低温余热发电装置,可年发电量1.2亿度。项目总投资16.6亿元人民币,是当今世界上单产能力最大,技术装备最先进的水泥生产线。 二、项目情况 该项目拥有和世界上最大的单线T/d新型干法生产线T/d的产能,但其他设备
变频稳压给水设备控制系统通过测到的管网压力, 经变频器的内置PID调节器运算后, 调节输出频率,实现管网的恒压供水。变频器的频率超限信号(一般可作为管网压力极限信号) 可适时通知PLC进行变频泵逻辑切换。为防止水锤现象的产生,泵的启停将联动其出口阀门。 变频稳压给水设备选型说明 变频稳压给水设备供水系统主要由变频控制柜、压力传感器、水泵等组成。变频控制柜由断路器、变频器、接触器、中间继电器、PLC等组成。 1.供水系统选用原则 (1)蓄水池容量应大于每小时最大供水量。 (2)水泵扬程应大于实际供水高度。 (3)水泵流量总和应大于实际最大供水量。 (4)变频控制柜选型: 用户可根据供水量和供水高度确定水泵型号及台数,然后对控制柜
群时延测量的挑战
与步进/伺服驱动技术完全精通教程
有奖直播 是德科技 InfiniiMax4.0系列高带宽示波器探头新品发布
MPS电机研究院 让电机更听话的秘密! 第一站:电机应用知识大考!跟帖赢好礼~
ADI世健工业嘉年华——深度体验:ADI伺服电机控制方案
解锁【W5500-EVB-Pico】,探秘以太网底层,得捷电子Follow me第4期来袭!
随着生活水平的提高,人们对电子产品的要求也越来越高,很多电子产品都用上了显示屏,像家电、汽车、医疗等很多产品都配有显示屏,而且这些 ...
电动机的过载保护指的是在电机承受超过其额定负载时,通过一系列保护措施保护电动机的安全运行。电动机有多种过载保护方法,其中最常见的方 ...
变频器是一种电力调节设备,它根据负载需求调整电力频率,以实现对电动机速度的精确控制。在使用变频器的过程中,正确的接线和配线是非常重 ...
电动机绝缘电阻的降低可能有多种原因,包括环境因素、材料老化、机械损伤、温度过高、潮湿等。要提高电动机的绝缘电阻,可以从以下几个方面 ...
在什么情况下应测量电动机的绝缘电阻?电动机的绝缘电阻是指电机绝缘材料的绝缘性能。它是一个重要的参数,用来评估电机绝缘系统的健康状况 ...
Profinet转Can协议网关和西门子PLC和直流伺服驱动器通讯案例
站点相关:嵌入式处理器嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科